CLOUD INFRASTRUCTURE
NETWORK AND SECURITY USER GUIDE FOR VIRTUAL SERVER (DEDICATED) GEN2
This guide focuses on the network and security features of Virtual Server (Dedicated) Gen2 cloud infrastructure. It describes the physical environment we use to deliver your cloud services, as well as additional network and security features you can control.

This guide should be read in conjunction with other Cloud Services guides. See How to use this guide for details.

AUSTRALIAN ACCOUNT HOLDERS

For sales, account set-up enquiries and technical support, contact your Telstra representative or visit the Cloud Services website (www.cloud.telstra.com), where you'll find all our contact details plus a glossary, FAQs and Our Customer Terms.

TELSTRA GLOBAL ACCOUNT HOLDERS

This service is not yet available in regions outside Australia. Contact your Telstra Global representative or visit the Telstra Global website (www.telstraglobal.com/cloud) for current information on the products available.

Note: we don’t provide assistance with issues specific to a customer’s local network, servers, operating systems and software (post-installation). Specialist technical support may be charged as an additional service.

CONVENTIONS USED IN THIS GUIDE

The following typographical conventions are used in this guide for simplicity and readability:

Web addresses, email addresses and hyperlinks are shown in bold italics, for example www.cloud.telstra.com.

Button names and titles/features on your computer screen are shown in italics.

User input is shown in typewriter font.

© Telstra Corporation Limited (ABN 33 051 775 556) 2017. All rights reserved.

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, information contained within this manual cannot be used for any other purpose other than the purpose for which it was released. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of Telstra Corporation Limited.

Words mentioned in this book that are known to be trademarks, whether registered or unregistered, have been capitalised or use initial capitals. Terms identified as trademarks include Microsoft and Microsoft Windows.
WHAT’S INSIDE

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOW TO USE THIS GUIDE</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>OUR DATA CENTRES</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>HOW WE DELIVER CLOUD SERVICES</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>YOUR VIRTUAL DATA CENTRES</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>VIRTUAL SERVER NETWORKS AND SECURITY</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>YOUR PUBLIC NETWORK</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>YOUR PRIVATE NETWORK</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>TELSTRA’S CLOUD GATEWAY</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>TELSTRA NEXT IP® NETWORK</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>IPSEC VPN</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>DUAL NETWORK CONNECTION</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>STATIC ROUTES</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>FIREWALLS</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>LOAD BALANCERS</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>MANAGEMENT CONNECTION</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>SMTP MAIL RELAY</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>APPENDIX A: ROUTING PRIVATE TRAFFIC WITHIN YOUR VIRTUAL HOST</td>
<td>48</td>
</tr>
</tbody>
</table>
CHAPTER 1
HOW TO USE THIS GUIDE

The network and security environment referred to in this document is specific to the Virtual Server (Dedicated) Gen2 service. You can use this guide as a supplement to the Virtual Server (Dedicated) Gen2 User Guide.

This guide includes instructions on how to create and modify virtual server network connections and security features. The guide assumes you have access to the Cloud Services management console – for more information about using the Cloud Services management console, see the virtual server user guide listed above.

For details about managing your account and accessing the Cloud Services management console, see the Account Management Guide.

Our Cloud Services diagram below shows what’s covered in this guide, and where to go for further details.
CHAPTER 2
OUR DATA CENTRES

Our data centres securely house the physical resources and infrastructure used to provide our cloud solutions. We own, operate and maintain all our physical data centres. Data centres are currently located in:

- Melbourne
- Perth
- Sydney

The physical infrastructure within our data centres is protected by four layers of security:

- Outer perimeter
- Site grounds
- Buildings (including electronically-secured floors and CCTV corridor surveillance)
- Internal rooms (including CCTV surveillance for rooms hosting ICT infrastructure and locked cabinets and cages)

Data centres provide you with connectivity to:

- The internet
- Your private networks via a Cloud Gateway network (Melbourne and Sydney data centres only), Telstra Next IP network (Perth) or IPsec VPN tunnel
- Your stored data
- Your dedicated infrastructure resources

You can select which data centre(s) you will use to source cloud infrastructure services. We describe your chosen source as your virtual data centre. You'll find instructions for managing your virtual data centres later in this guide.

Our backup services use separate data centres for short-term storage and long-term retention.

AVAILABILITY AND RELIABILITY

Our data centre infrastructure is fully redundant to protect your services and data from a single point-of-failure.

This enables us to provide cloud services with high levels of availability, service support and coverage. Infrastructure is continuously monitored by our Cloud Services support team using advanced monitoring tools and denial of service protection.

Network reliability is maintained by redundancy on two levels:

- **Intra-component redundancy** - including dual supervisor engines, multiple power supplies served by diverse power sources and fan redundancy
- **Inter-component redundancy** - including dual physical components and multiple links

Service level agreements can be viewed in Our Customer Terms (Australian customers only) or your separate agreement with us.
NETWORK SECURITY

All our data centres are located in or close to capital cities, and housed in high security physical environments. Your data is protected 24/7 by our team of security specialists. The role of our Cloud Services support team is to provide:

- Protection of the physical infrastructure that provides your cloud services
- Privacy and security of individual customer’s data in a multi-tenancy environment
- Basic security controls at the infrastructure and network level
- Infrastructure logging, alerting and auditing

Some of the security features of our cloud services infrastructure include:

- Network-based firewalls
- Remote access security
- Regular vulnerability checks
- Denial of service protection
- Privacy controls

Our cloud infrastructure is protected by a sophisticated intrusion detection and prevention system (IDS/IDP) and a firewall protecting the entire cloud infrastructure perimeter.

To maintain security standards, we use leading technologies to perform regular network and infrastructure security updates. We also perform regular penetration testing of our platform using a third party.

In addition to the security measures our infrastructure provides, we offer ways for you to customise and enhance your own cloud network security.

CUSTOMER ISOLATION

Your data and virtual resources are separated from other customers on three layers – network, compute and data.

Network isolation is achieved using technology that ensures low-level network separation, and uses advanced and encrypted communication channels (e.g. SSL VPN). Transit networks between customers’ virtual servers and data storage areas are isolated and unreachable from any network.

Compute isolation is separation that occurs at the physical hardware level within our data centres.

Data isolation dedicates entire volumes to a single customer.
The physical infrastructure we use to provide cloud services is based on multi-tenancy architecture and designed to give you flexibility, and ensure security, privacy and reliability.

We use two network constructs, public and private. The architecture of the Virtual Server (Dedicated) Gen2 service logically separates the private and public. You can choose to connect the two networks – see the Dual Network Connection section. The following diagrams provide a simplified view of how these networks operate when accommodating multiple customers.

The logical routing instance is part of our infrastructure, not visible or configurable by you.

PUBLIC NETWORK

Our public network provides your virtual servers with access to the internet via a public interconnect.

There are three main ways to connect to the internet.

1. Public shared network – virtual servers are allocated individual IP addresses on a shared subnet. Your virtual servers may share the same subnet as virtual servers from other customers.

2. Dedicated public subnet – there are two variations of dedicated public subnets – Routed IP subnets and Floating IP subnets, both of which provide a dedicated range of IP addresses that can be assigned freely

3. Public NAT gateway – allows multiple privately addressed virtual machines access to the internet via a single public IP address.

Security separation between your virtual servers can be achieved by adding a firewall. You have the option of adding network services such as load balancers.
PRIVATE NETWORK

The private network provides your own logical routing instance to which you can add private IP subnets completely separate to your public network. If required, our private network allows you to access virtual servers in your private network, via a private interconnect, through a private network connection.

Security separation between your virtual servers is achieved with the firewall provided. You have the option of adding network services such as load balancers.

Private layer 2 networks allow non-routed private networks to create tiered network architectures with freedom to allocate any IP address you require.
CHAPTER 3 HOW WE DELIVER CLOUD SERVICES
A virtual data centre represents the collection of cloud resources you’re drawing from a specific physical location. A single virtual data centre also represents a logically-isolated network within your cloud solution. Each of your virtual data centres can be viewed as a network configuration diagram, in the Network & security page of the management console.

MULTIPLE VIRTUAL DATA CENTRES

Cloud infrastructure lets you draw your cloud resources from multiple data centres in different locations and assign resources to your choice of virtual data centre.

You can create multiple virtual data centres drawing resources from the same physical data centre location. If you choose to do this, each virtual data centre will form a logically-isolated network with its own private interconnect. By default these virtual data centres will have no communication between each other. Separate load balancers and network connections will be required for each virtual data centre. Firewalls will be added by default per virtual data centre.

ADD A VIRTUAL DATA CENTRE

You can add a new virtual data centre at any time by purchasing a new compute service.

RENAME A VIRTUAL DATA CENTRE

You can customise the name of a virtual data centre to make the name more meaningful to your operations.
REMOVE A VIRTUAL DATA CENTRE
A virtual data centre will be removed after you remove all the compute services it contains.

NOMINATE A DATA CENTRE
If your cloud solution is contained within a single virtual data centre, then your resources will be automatically assigned to that virtual data centre.

But if you’re operating your cloud solution across multiple data centre locations, you’ll be asked where you want to assign certain cloud resources as you add them, such as:

- SSL VPN users
- SMTP mail relay

Other types of resources can only be created from within a specific virtual data centre environment.

- Firewalls
- Load balancers
- Private network connections
- Dedicated subnets
- Static Routes

Each of your virtual data centres can be viewed in the Cloud Services management console as a network diagram. These diagrams provide an alternative way of adding virtual servers, resources, and network connections to your existing configuration. Select the item on the diagram you want to configure, and the fields required to add the item will appear on screen.
You can choose to connect a virtual server within your data centre to a public or private network, or use dual homing to connect a virtual server to both networks.

Each of your networks can contain virtual servers and associated firewalls and load balancers. All virtual servers within a network can be allowed to communicate with each other, or separated using firewall rules.
CLOUD INFRASTRUCTURE NETWORK FEATURES

There are a number of features you can customise to manage traffic flow, privacy and security of your data. Apart from internet access, all network features are optional and inactive by default.

Many of these features are described in detail, later in this guide.

To view pricing of optional network features, refer to the **pricing guide** for your data centre location.

Dual homing allows a single server to be accessed via both public and private network connections, and communicate with virtual servers in both your public and private networks.

SSL VPN connection is a way to remotely and securely access your vCenter server and virtual servers on private networks.

Firewalls are included as part of your service. They can be configured by you to allow or deny traffic through groups or individual virtual servers. A separate firewall exists for each network, and each compute service within your cloud solution.

Load balancers can be used to distribute traffic across multiple virtual servers within the same network.

Security add-ons are optional features available to enhance your network security.

SMTP mail relay is an optional service allowing you to send outbound email from a virtual server in the cloud.

Static Routes are pre-determined paths you manually choose to determine where network information must follow to reach a specific host or network. They are available on your private and public networks.

NAT Gateway is an optional feature allowing multiple virtual services to access the internet via a single public IP address.

Dedicated public networks are available as either Routed or Floating networks allowing more complex public facing infrastructure.

Layer 2 private networks make it possible to build tiered network constructs were routing between subnets can be controlled by appliances or virtual servers.
NETWORK SECURITY ADD-ONS

These optional network security add-ons can be added to your cloud solution at any time, to maximise the security of your cloud resources and data.

For more information including pricing, see the Pricing Guide for your virtual data centre location.

INTERNET PROTECTION

Internet Protection Mail helps keep spam, viruses and inappropriate content off your network. You can choose to have anti-virus and anti-spam filtering software applied to virtual servers connected to the internet and hosted mail servers. The software scans incoming emails to detect spam and viruses.

Internet Protection Web helps shield your business from known and emerging viruses and web threats including malware and spyware. Web filtering can be applied to virtual servers in your public network and hosted proxy servers.

VULNERABILITY DISCOVERY

Vulnerability discovery scans virtual servers in your public networks to identify and prioritise potential weak points and security exposures. The report produced during the scan details and assigns criticality ratings to any exposure detected per-server.

DENIAL OF SERVICE (DOS) PLATFORM PROTECTION

Our Cloud Services platform is shared and as such a DoS attack on one customer could affect the platform and performance of other customers if left unmanaged. As a standard feature, Telstra’s Security Operations Centre monitors the platform internet traffic. If unusual traffic is detected we automatically rate limit the traffic to ensure continued performance of other customers. We’ll notify you if your virtual servers are attacked and your internet connection has been rate limited.

We’ll keep you informed by:

- Emailing you to inform you of the attack, and potential reduction in your service performance
- Emailing you when the attack has passed, and normal service performance can resume

DoS platform protection is included with your cloud services and requires no activation on your part. This level of protection is provided in all virtual data centre locations. You can’t remove or configure this standard level of protection, however if using any of our Australian virtual data centre locations, you have the option of purchasing our DoS protection service.

DENIAL OF SERVICE PROTECTION

Denial of service protection is an optional premium service to prevent malicious attacks across your cloud solution.

In the event of an attack traffic is diverted to Telstra’s Security Operations Centre where it is cleaned before being routed back to your virtual data centre.

More information about this service is available on the Telstra website.

GATEWAY PROTECTION ADVANCED (GPA)

The Gateway Protection Advanced (GPA) service secures your multi-cloud, internet and Next IP services against malicious attacks, inappropriate usage, and unauthorised access with managed cloud-enabled next-generation security appliances.

The service offers a platform-specific gateway for complex connectivity and cloud security requirements with ability to scale up for performance and reliability.

Contact your Telstra representative for more information.
NETWORK CONFIGURATION

A wide range of network configurations are made possible using combinations of:

- **Firewalls**
- **Routing**
- **Load balancers**
- **Private IP subnets**
- **Public IP addressing**
- **Network connections**
- **Virtual data centres**

Virtual server networks can be configured in multiple tiers and zones.

Refer to the *Infrastructure Design Guide* to see examples of how common network scenarios can be built using our cloud solution.
VIRTUAL SERVERS

Virtual servers can be connected to the internet via multiple public network options. The default option provided is the public shared network for individual virtual servers. You can choose to move them between the public shared, public dedicated and NAT gateway options.

FIREWALLS

A firewall is installed by default in your Virtual Server (Dedicated) Gen2 environment to maintain security from the outset. See the firewalls section of this guide for further information. Each compute service comes with a dedicated firewall for public network, which is configured separately to the private network firewall.

IP ADDRESSING

We allocate public IP addresses to virtual servers in your public network. Depending on the public networking options chosen, IP addresses are either allocated individually to virtual servers or as blocks of IP addresses in the cases of dedicated public subnets.
Your options are:

- Shared public network
- Dedicated public subnets
- Public NAT gateway

Shared public network

You can allocate up to five individual IP addresses to your virtual servers in the public network. These IP addresses may not be sequential. All public IP addresses allocated to virtual servers are static.

Once provided, you can’t move your IP addresses to another server. IP addresses should not be manually changed after the initial configuration. Modifying the IP addresses assigned to a virtual server’s internet vNIC could lead to a loss of connection to your public interconnect and internet.

Multiple IP address can be requested and allocated to the same vNIC.

Dedicated public subnets

There are two types of dedicated public subnets, which give you the freedom to assign IP addresses as required.

1. Routed IP subnets – allows you to have a range of dedicated IP addresses directly accessible to and from the internet.
2. Floating IP subnets – allows you to place a virtual appliance between the internet and your virtual machines. You’ll get access to a dedicated range of IP addresses not connected directly to the internet. Static Routes will need to be used to direct the floating IP range to your virtual appliance. You must have a Routed IP subnet before you can request a Floating IP subnet.

Public NAT gateway

A NAT Gateway provides the ability for multiple private network address spaces to masquerade as a single Public IP address, allowing direct internet access without the need to consume a Public IP Address per server (Source NAT). Up to three privately addressed subnets can be added behind the NAT gateway allowing any virtual server access to internet services with only outgoing connections.

It also allows a single internal Private IP Address to be reached from Internet (Destination NAT). An additional public IP is added to the NAT gateway and pointed at one of your attached privately addressed subnets, allowing incoming internet traffic. Outgoing traffic from that private IP will masquerade as the Destination NAT IP address. Up to five Destination NAT IP addresses can be added to your NAT gateway.

The privately addressed networks that are attached to the NAT gateway are still separate from the Private IP subnet networks created in your private networking section of the Cloud Services management console. You can connect the private and public networks as required.

Contact your Telstra Representative for instructions in using these features.

NETWORK RESOURCES

All of our cloud infrastructure network features are available for use within your public network.

LOAD BALANCING

A single load balancer can distribute traffic across multiple virtual servers in any combination of server type, within your public network. We provide a public IP address for the load balancer. The load balancers section of this guide contains further information.
MAKING CHANGES TO YOUR PUBLIC NETWORK CONFIGURATION

In general, any changes, additions or removal of network resources can be made by completing a brief online request form through the Cloud Services management console. There are various forms available to deal with specific types of request.

After you fill out and submit a form, we’ll get to work processing your request. Each request form states the time it takes for us to make the particular addition or changes to your service.

We may get in contact with you if we need more information to process your service request, or if some of the information you provided in the form is incorrect. We’ll contact you using the details stored in your Telstra account, unless you provided us with an alternative contact when you submitted the request.

You can track a service request in the activity log, accessed from the Cloud Services management console’s reports section.

The following network and security features can be deployed and customised through the Cloud Services management console. The Network & security management section is located under Infrastructure in the Cloud Services management console. From here, you can:

- View your shared public IP addresses
- Request additional shared public IP addresses
- Request dedicated public subnets
- View dedicated public subnets
- Remove dedicated public subnets

VIEW SHARED PUBLIC IP ADDRESSES

You can view your Shared Public IP Addresses through the Network & security section in the Cloud Services management console.

REQUEST SHARED PUBLIC IP ADDRESSES

You can request a Shared Public IP Address on the Public Shared network via Network & security section in the Cloud Services management console. The virtual server name and MAC address of the interface must be supplied. These are used to bind the IP address to the virtual server.

REQUEST DEDICATED PUBLIC SUBNETS

You can order a total of three Dedicated Public Subnets (Routed and Floating) per compute subscription. For example, you can have one Routed IP Subnet and two Floating IP Subnets.

These are requested by clicking on the Add subnet button in the Network & security section on the Cloud Services management console and selecting the size of the subnet that you require.
CHAPTER 6 YOUR PUBLIC NETWORK

Add subnet button on CSMC

Add subnet panel

A minimum number of blades is required to request a subnet:

- /29 or /28 subnet requires a minimum of 2 blades across all the clusters in your compute subscription (2 blade minimum is by default anyway)
- /27 subnet requires a minimum of 4 blades across all the clusters in your compute subscription
- /26 subnet requires a minimum of 5 blades across all the clusters in your compute subscription

VIEW DEDICATED PUBLIC SUBNETS

You can view your Dedicated Public Subnets through the Network & security section in the Cloud Services management console.

REMOVE DEDICATED PUBLIC SUBNETS

You can request removal of any of your Dedicated Public Subnets once they’re active. Simply select the Remove link next to the subnet. The IP addresses used for that subnet will be released. You won’t be able to request the same IP address again.

Additionally, you can’t remove your final remaining Routed IP Subnet without removing your Floating IP Subnets.
CHAPTER 7
YOUR PRIVATE NETWORK

Connect to your private network virtual servers (via your private interconnect) through either:

- a Cloud Gateway network (Melbourne and Sydney data centres)
- a Telstra Next IP network (Perth)
- IPsec VPN tunnel

A private network construct is created by default in all Virtual Server (Dedicated) Gen2 services. A private IP subnet must be created before it can be populated with virtual servers and used with firewalls or load balancers.
Private IP subnets are nominated by you. Once created, you can allocate private addresses to any of your virtual servers connected to your subnet. All private IP addresses allocated to virtual servers are static.

In addition to the network security add-ons that can be added to your cloud solution, there are also a number of network resources you can add to your network at any time.

The following network and security features can be deployed and customised through the Cloud Services management console. The Network & security management section is located under Infrastructure in the Cloud Services management console. From here, you can:

- Create a private IP subnet
- View you private IP subnet
- Remove a private IP subnet
- Modify your private IP subnet network
- Connect to your private network through a Cloud Gateway network
- Connect to your private network through a Telstra Next IP network
- Connect to your private network through an IPsec VPN tunnel
- Create a layer 2 network
- View your layer 2 network
- Remove a layer 2 network
- Add and configure firewalls
- Add and configure Static Routes
- Add and configure load balancers
- Assign SSL VPN users
- Set up a SMTP mail relay

MAKING CHANGES TO YOUR PRIVATE NETWORK CONFIGURATION

In general, any changes, additions or removal of network resources can be made by completing a brief online request form through the Cloud Services management console. There are various forms available to deal with specific types of request.

After you fill out and submit a form, we'll get to work processing your request. Each request form states the time it takes for us to make the particular addition or changes to your service.

We may get in contact with you if we need more information to process your service request, or if some of the information you provided in the form is incorrect. We’ll contact you using the details stored in your Telstra account, unless you provided us with an alternative contact when you submitted the request.
You can track a service request in the activity log, accessed from the Cloud Services management console’s reports section.

You can separate and distinguish groups of virtual servers within a private network by using *private IP subnets*.

PRIVATE IP SUBNETS

A private IP subnet enables you to connect to your virtual servers within a private network, and access our cloud infrastructure via your private interconnect. You’ll need to provide a private IP subnet for each compute service.

The subnets you assign to different virtual server types within the same private network can’t overlap.

You can choose private IP subnets (non-internet addressable) for virtual server groups in your private network.

We currently only support IPv4 addresses. The IP subnet must come from the following RFC 1918 address ranges:

- 10.0.0.0 – 10.255.255.255
- 172.16.0.0 – 172.31.255.255
- 192.168.0.0 – 192.168.255.255

We reserve the first useable IP address of each subnet. The table below highlights the IP address capacity of various subnet masks:

<table>
<thead>
<tr>
<th>IP SUBNETS</th>
<th>AVAILABLE IP ADDRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>/23</td>
<td>255.255.254.0</td>
</tr>
<tr>
<td>/24</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>/25</td>
<td>255.255.255.128</td>
</tr>
<tr>
<td>/26</td>
<td>255.255.255.192</td>
</tr>
<tr>
<td>/27</td>
<td>255.255.255.224</td>
</tr>
<tr>
<td>/28</td>
<td>255.255.255.240</td>
</tr>
</tbody>
</table>
CREATE A NEW PRIVATE NETWORK

CHOOSE A COMPUTE SERVICE

Select the compute service to which you’d like to add a private IP subnet.

SPECIFY YOUR PRIVATE IP SUBNETS

Add one or multiple private IP subnets.

You can add more IP subnets in the future if you require them, using the process explained below.

IF CONNECTING TO YOUR PRIVATE NETWORK VIA CLOUD GATEWAY OR TELSTRA NEXT IP NETWORK

If you’ve previously connected a Cloud Gateway network or Telstra Next IP network to your virtual data centre, then at this point you can choose to make your private IP subnets accessible to your network. You can modify this later through the Cloud Gateway network or Telstra Next IP network section of the Connections page in the Cloud Services management console.

Please be aware that the following three RFC 1918 summary routes may not be advertised from your cloud tenancy into your Telstra IP network.

If your cloud tenancy advertises these summary ranges towards the Telstra IP network they will be filtered out by Telstra’s Cloud Gateway.

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Any subset or supernet of these summary routes can be advertised. For example:

- You can advertise 192.168.0.0/17 and 192.168.128.0/17 from your cloud tenancy towards the Telstra IP network instead of 192.168.0.0/16.
- You can advertise 172.16.0.0/13 and 172.24.0.0/13 instead of 172.16.0.0/12.
- You can advertise 10.0.0.0/9 and 10.128.0.0/9 instead of 10.0.0.0/8.
More information about this can be found in the Cloud Gateway Technical Guide:

ALLOCATING IP ADDRESSES TO VIRTUAL SERVERS IN YOUR PRIVATE NETWORK

Individual IP addresses need to be allocated to every virtual server in your private network. You can allocate IP addresses when you create or dual home a virtual server.

Virtual server IP addresses must fall within a private IP subnet range configured in the private network. We reserve the first useable IP address of each subnet to configure the gateway of your network.
MANAGE YOUR PRIVATE NETWORK

There are a number of ways to modify and manage your private network, after it’s initially created.

VIEW PRIVATE IP SUBNETS

You can view the private IP subnets you’ve created through the Network & security section in the Cloud Services management console.

ADD IP SUBNETS TO AN EXISTING PRIVATE NETWORK

To add a private IP subnet, see the previous instructions in the Create a private network section.

Creating additional private IP subnets and configuring firewall rules around them, is a way to group and separate virtual servers within your private network. For examples of how you might do this, see the Infrastructure Design Guide.

To access virtual servers connected to a private IP subnet via an IPsec VPN tunnel, the IP subnet will need to be specified as one of your destination subnets when configuring an IPsec VPN tunnel.

Private networks that have been configured to be accessible from the Cloud Gateway network or Telstra Next IP network will also be reachable from a SSL VPN connection.

To add a new IP subnet, provide both the IP subnet and the IP range within that subnet. See the previous Create a private network section for detailed instructions.

ADD LAYER 2 PRIVATE NETWORKS TO AN EXISTING PRIVATE NETWORK

Layer 2 Private Networks are non-routed private subnets. They can be requested from the Cloud Services management console and used to create tiers of networking. As they are not routed, you can use your own IP addressing on the Layer 2 private network. They would commonly be used with dual-homed virtual servers or to access appliances.

REMOVE A PRIVATE NETWORK

Before you can remove a private IP subnet or a Layer 2 Private Network, you’ll need to remove any virtual servers that were connected to this subnet when the server was first created.

Select the Remove subnet or Remove layer 2 private network link.
Telstra’s Cloud Gateway™ is a simple way to access your chosen cloud platforms. It allows you to log in to a single console, where you can view and manage all of your cloud connections in one place.

Having all of your connections in one place makes it easier to understand the relationships between your Telstra private networks and your cloud services.

Whether you’re connecting to one or multiple cloud platforms – or adopting a hybrid cloud strategy – Cloud Gateway offers a simple, one-stop solution that you can scale as your workloads change and your business grows.

Cloud Gateway supports Virtual Server (Dedicated) Gen2 and is our only private network in Melbourne and Sydney. Data centres in other states (Perth) will remain on the Telstra Next IP network until the new service is available.

Note that you must register for the Cloud Services Store, if you haven’t already done so, in order to purchase Cloud Gateway. See the Cloud Gateway User Guide for details on how to register, connect and disconnect your cloud service to the Cloud Gateway network.

CONNECT TO THE CLOUD GATEWAY NETWORK

You can connect to the Cloud Gateway network using the Connections page in the Cloud Services management console.

You may have to register for the Cloud Services Store, if you haven’t already done so, in order to purchase Cloud Gateway. This will give you access to the Cloud Gateway management console where you can complete your connection.

See the Cloud Gateway User Guide for more details on how to connect to the Cloud Gateway network using the Cloud Gateway management console.

DISCONNECT FROM YOUR TELSTRA NEXT IP NETWORK

You can disconnect your cloud service from Telstra Next IP via the Cloud Gateway management console.

See the Cloud Gateway User Guide for more details on how to disconnect from the Cloud Gateway network using the Cloud Gateway management console.
A Telstra Next IP network connection provides a permanent and secure way to connect your local area networks to your cloud solution (via your private interconnect).

You can use your existing IP MAN, Connect IP or Business IP to access virtual servers in your private networks.

A separate Telstra Next IP network connection is required for each virtual data centre you wish to privately communicate with. Multiple private network connections will allow communication between private interconnects in multiple virtual data centres. Multiple virtual data centres can communicate with one another when each one is connected to the same Telstra Next IP network.

A Telstra network connection can only be provided to your office locations within Australia.

Note: all Telstra Next IP network references in this guide use the example of an Australian-based private network connection.

CONNECT TO THE TELSTRA NEXT IP NETWORK

You can connect to the Telstra Next IP network using the Connections page in the Cloud Services management console. You can choose which of your private IP subnets and private load balancer virtual IP addresses you’d like to make accessible to your Telstra Next IP network connection. Only virtual servers and load balancers with IP addresses within the subnet range(s) you select will be accessible through your Telstra Next IP network connection.

Subnets and load balancers which you’ve recently requested can only be selected once they are active. You can modify this configuration once the Telstra Next IP network connection is active.

DISCONNECT FROM YOUR TELSTRA NEXT IP NETWORK

You can disconnect your Telstra Next IP by selecting the Disconnect link.
IPsec VPN provides a permanent, site-to-site network tunnel between an external network (such as your office network) and the private interconnect within a single virtual data centre. Data is transferred over the internet, through a private and secure network tunnel.

Before you can request an IPsec VPN tunnel, you’ll need an active private network.

An IPsec VPN tunnel has two connected endpoints – one endpoint at your source site, usually your office LAN, and a destination endpoint connected to the private interconnect in your virtual data centre.

Traffic that passes through your secure IPsec VPN tunnel, between the two endpoints, is described as secured traffic.

Each IPsec VPN allows connection to one virtual data centre. You can create up to ten IPsec VPN tunnels for each virtual data centre.

Specify one or more source subnets at a single source site and multiple destination subnets in your private network – all within a single network tunnel.

Use firewall rules within your private network to restrict access to selected virtual servers.
CREATE AN IPSEC VPN TUNNEL

IPsec VPN

IPsec VPN is a site-to-site network tunnel - creating a secure, permanent connection to your servers.

The IPsec VPN tunnel will be connected to the private interconnect of this virtual data centre.

Learn more about IPsec VPN.

Add IPsec VPN tunnel

You can request IPsec VPN tunnels from the Connections page in the Cloud Services management console.

Name your tunnel so that it's unique to your network and easily identifiable.

Enter the public IP address of your source endpoint.

SPECIFY YOUR SECURED TRAFFIC

Enter at least one source subnet for your secured traffic.

To specify more than one subnet on your source network, use the +add another source subnet link to add a subnet. IP subnets from the same LAN will all be contained within a single IPsec VPN tunnel.

Select a destination subnet. Multiple destination subnets can be chosen.

If you want to load balance your IPsec VPN secured traffic, you need to enter the IP address of an existing load balancer in your private network.

To access virtual servers connected to your public network through an IPsec VPN tunnel, you'll need to connect your virtual servers to the private network as a second connection.

If you have a private firewall, you'll need to configure firewall rules to allow IPsec VPN secured traffic. You can also use firewall rules to allow or deny traffic to and from individual servers within your private IP subnet.

Overlapping Cloud Gateway/Telstra Next IP networks and IPsec VPN tunnel source subnets can cause service disruption. None of your source IP subnets connecting to your cloud solution should overlap. It's your responsibility to manage your IP subnets and avoid conflicts.

CONFIGURE YOUR IPSEC VPN SECURITY

Select a phase 1 security algorithm from the dropdown list.

Select a phase 2 security algorithm from the dropdown list.

Recommended options for both phases are marked. Check your local routing device to ensure it’s compatible with the security options you selected.
You choose the encryption and authentication protocols that secure your IPsec VPN connection, from the following options.

<table>
<thead>
<tr>
<th>IPSEC VPN SECURITY PHASE</th>
<th>ALGORITHM OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>AES/SHA/DH2</td>
</tr>
<tr>
<td>Lifetime: 86,400 seconds (24 hours)</td>
<td>AES/SHA/DH5</td>
</tr>
<tr>
<td></td>
<td>AES-256/SHA/DH2</td>
</tr>
<tr>
<td></td>
<td>AES-256/SHA/DH5</td>
</tr>
<tr>
<td></td>
<td>AES/MD5/DH2</td>
</tr>
<tr>
<td></td>
<td>3DES/SHA/DH2</td>
</tr>
<tr>
<td></td>
<td>3DES/MD5/DH2</td>
</tr>
<tr>
<td>Phase 2</td>
<td>AES/SHA</td>
</tr>
<tr>
<td>Lifetime: between 3,600 and 43,200 seconds (regardless of whether or not PFS is selected)</td>
<td>AES-256/SHA</td>
</tr>
<tr>
<td></td>
<td>AES/MD5</td>
</tr>
<tr>
<td></td>
<td>3DES/SHA</td>
</tr>
<tr>
<td></td>
<td>3DES/MD5</td>
</tr>
<tr>
<td>Phase 2 perfect forwarding secrecy (PFS)</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>DH2 (1024 bits)</td>
</tr>
<tr>
<td></td>
<td>DH5 (1536 bits)</td>
</tr>
</tbody>
</table>

SUBMIT THE REQUEST

Please take note of your pre-shared key. You’ll need to configure your local router with all the IPsec VPN settings you enter as part of the request. You can view all your settings apart from your pre-shared key, at any time in the Networks section.

MODIFY AN IPSEC VPN TUNNEL

Your existing IPsec VPN tunnels will be listed on the Connections page in the Cloud Services management console.

Select the tunnel you want to modify and select the Edit button.

REMOVE AN IPSEC VPN TUNNEL

Your existing IPsec VPN tunnels will be listed on the Connections page in the Cloud Services management console.

Select the tunnel you want to remove and select the Remove link.
A dual homed virtual server can have both a public and private IP address, allowing it to be accessed through both your public and private network connections.

This creates a number of possible connection combinations. You could access a dual homed virtual server via:

- The internet and a Cloud Gateway network/Telstra Next IP network
- The internet and an IPsec VPN tunnel
- The internet and a Cloud Gateway network/Telstra Next IP network and an IPsec VPN tunnel

Telstra Next IP network is only available to access Australian data centres.

Dual homing can also be used to allow communication between virtual servers contained in different networks (public and private).

ADDING A SECOND NETWORK CONNECTION TO A VIRTUAL SERVER

For a *Virtual Server (Dedicated) Gen2*, add a second network connection through vCenter. All private IP addresses on virtual servers (dedicated) are managed by you. Public IP addresses need to be requested through the Cloud Services management console.

DIRECTING PRIVATE TRAFFIC WITH ROUTING IN VIRTUAL SERVERS

To complete the set up of a second network connection to a virtual server, you’ll need to configure the static routing in your virtual server’s operating system. This ensures your server’s outbound traffic is sent through the appropriate network connection. Usually, you would configure the default gateway to the public network gateway IP address and, either wide ranging private ranges (for example 10.0.0.0/8) or specific ranges to the private gateway IP address.

Once manually configured, static routing will send private traffic (destined for any private IP address) through your virtual server’s private network connection. All traffic destined for a public IP address will be sent through your virtual server’s public network connection.

If you have an office LAN connected to an IPsec VPN tunnel using a public IP subnet as a secured traffic source subnet, and you are connecting to either Virtual Server (Shared) or Virtual Server (Dedicated) virtual server types, then you’ll need to configure routes toward this subnet using your private network vNIC.

The way to configure static routing varies depending on your virtual server’s operating system. See the *appendix* in this user guide for details.
CHAPTER 11
STATIC ROUTES

Static Routes allow you to choose a pre-determined path for your information to reach a specific host or network. Setup a Static Route to direct traffic to an alternative IP address on a server, or direct whole subnets to a virtual device or appliance. Static Routes are configured in your logical routing instance on the appropriate network.

Static Routes are available on both your public and private networks.

Private Static Routes can be used in conjunction with Layer 2 Private Networks to direct IP addresses or IP subnets to a previously configured address on your private IP subnets. Static Routes can be configured to be advertised to the Cloud Gateway network/Telstra Next IP network from the management console.

CONFIGURING A STATIC ROUTE

Static Routes can be configured via the Cloud Service management console. They can be used when Floating IP Subnets have been directed to an IP address on a configured Routed IP Subnet.

Select Connections in the Network & security section in the Cloud Services management console. Select the configure static routes button.

Select if it’s for a public or private network. Public network routes are only available if you have a Routed IP Subnet. Private static routes are only available if you’ve added a private subnet.

Specify a unique name for the route and a destination network. If you’re adding a private route then select a private subnet from the drop down list and enter an address within that subnet as the next hop. If you have access to the Cloud Gateway network or Telstra Next IP network you can choose to make this route accessible to it.

If adding a public route then you’d select a routed subnet from the drop down and enter an address within that subnet as the next hop. The destination network for a public static route would be a previously configured Floating IP Subnet. You can add up to five Static Routes at a time. These will be setup immediately on submission of your request.
Once the routes are active, you can modify or remove them via the Cloud Services management console and add more Static Routes.

Changes will be applied immediately upon submission.

Please be aware that the following three RFC 1918 summary routes may not be advertised from your cloud tenancy into your Telstra IP network.

If your cloud tenancy advertises these summary ranges towards the Telstra IP network they will be filtered out by Telstra’s Cloud Gateway.

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Any subset or supernet of these summary routes can be advertised. For example:

- You can advertise 192.168.0.0/17 and 192.168.128.0/17 from your cloud tenancy towards the Telstra IP network instead of 192.168.0.0/16.
- You can advertise 172.16.0.0/13 and 172.24.0.0/13 instead of 172.16.0.0/12.
- You can advertise 10.0.0.0/9 and 10.128.0.0/9 instead of 10.0.0.0/8.

Firewalls are provided for both your public and private networks to increase the security and privacy of your virtual servers.

Both private networks and public networks are created with default firewall rules – all network traffic is allowed by default on the private network, and all traffic is blocked by default on the public network. These rules can be updated via the Cloud Services management console.

Firewalls can be used to group and separate virtual servers into zones and tiers and control traffic through your public and private interconnect to your virtual servers. To see examples of this, refer to our *Infrastructure Design Guide*.

A single firewall can control traffic for a single compute service, within a single virtual data centre for either private or public networks.

Firewalls can be configured using various configurations. The source and destination for traffic needs to be specified per firewall rule. This can be done using the settings: ‘Any’, ‘All virtual servers’ or ‘Specific IP ranges’. Refer to the *Adding a firewall rule* section.
You'll need to configure firewall rules on both firewalls to allow communication between virtual servers protected by different firewalls, in the same virtual data centre.

If you’re dual homing a virtual server, you may already have firewall rules configured in their original network. To restrict traffic through your second network connection, you’ll need to configure separate firewall rules in the second network.

You can also create groups – IP sets, applications or application groups that can be applied to firewall rules. Groups can be reused within a subscription, saving you the effort of repeatedly creating multiple rules. See the Adding a group section.

ACCESSING THE FIREWALLS SECTION

You can access the Firewalls page of the management console under the Network & security section.

There are two tabs on the Firewall page:

1. Rules
2. Groups

THE RULES TAB

This is where you can configure firewalls on both your public and private networks.

From the rules tab, you can:

- Add firewall rules
- Edit firewall rules
- Re-order firewall rules
- Remove firewall rules

CONFIGURING A FIREWALL RULE

Locate the firewall you want to configure by selecting either the private or public instance in the Rules tab. Use the search bar if you need help finding an existing firewall rule.

You can confirm your active firewall rules by clicking View active rules.
ADDING A FIREWALL RULE

To add a firewall rule, select the Add rule button above your firewall table on the right.

Configure firewall rules by specifying:

- Action to allow or deny traffic
- Source
- Destination
- Ports and protocols

When configuring the firewall’s source and destination you can specify the following criteria:

- Any – anything including IP addresses inside and outside of the virtual data center.
- All virtual servers – for a public firewall, this is a maintained group of assigned public IP addresses and public IP subnets within a virtual data center. For a private firewall, this is a group containing all private IP addresses assigned to private subnets in the Cloud Services management console. This exclude IP addresses being used on Layer 2 Private Networks because they are unknown to us.
- Specific IP addresses – allows you to specify IP addresses by single IP address, IP range, IP subnet or an IP set (a group of IP addresses, ranges and/or subnets).

When configuring ports and protocols you can choose to allow/deny all or select:

- Specific ports and protocols
- Applications – a collection of ports of the same protocol
- Application groups – a collection of more than one application. This can contain a variety of protocols.

The available port/protocol combinations are:
<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP AND/OR UDP</td>
<td>Any port or port range</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
</tr>
<tr>
<td>ICMP</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

If you select FTP, the firewall will be configured to perform deep packet inspection and allow access on ports that are dynamically negotiated.

Remember to submit your changes once you’ve finished configuring you rules.

EDITING FIREWALL RULES

To launch the *Edit firewall rule* window, select *Edit* next to the firewall rule you would like to modify.

Change the details in the fields you would like to modify and then *Add rule to request*.

The modified rules will be highlighted blue in the firewall rules table.

You’ll need to select *Apply changes* for the rule edit to take effect.

RE-ORDERING FIREWALL RULES

Select *Edit* for the firewall rule you want to reorder.

If no other changes are needed apart from reordering, select *Add rule to request*.

Drag the firewall rule to the desired position.

Select *Apply changes*.

REMOVING FIREWALL RULES

Select *Remove* next to the firewall rule you would like to delete.

You’ll need to select *Apply changes* for the rule edit to take effect.

Your firewall is provided by default. If you choose no protection remove firewall rules or add a single permissive rule.

THE GROUPS TAB

There are 3 categories of groups that can be created.

- IP set – a collection of IP addresses, subnets or ranges in any sequence or combination.
- Application – a collection of ports of the same protocol.
- Application group – a collection of more than one application. This can contain a variety of protocols.

Once you’ve chosen the type of group you’d like to create, you can:

- *Add groups*
• Edit groups
• Delete groups

After you’ve created a group, it can be assigned to as many firewall rules as you choose, within your subscription.

CONFIGURING A GROUP

Select the type of group you want to configure. Use the search bar in each section if you need help finding an existing group.

ADDING A GROUP

Select the create button next to the group category (e.g. Create an IP set).

Enter a name for your group. This name must be unique within your subscription.

If you’re creating an IP set – add at least one of the following values. There is no limit to how many IP addresses, ranges or subnets can be added to an IP set.

If you’re creating an application – you must select a single protocol, either TCP or UDP, per application. Combination of protocols are not allowed*. There is no limit on port numbers or ranges that can be added to an application.
*create an application group for a combination of protocols.

If you’re creating an application group – creating an application is a pre-requisite for an application group. Select from existing applications to create your group. You can create application groups with a combination of both TCP and UDP protocols.

You can choose to add comments to your group. This can help you identify the group when you’ve created many similar groups.

Select *Submit*.

EDITING GROUPS

Select the group you’d like to modify to view the group details. Select *Edit*.

Change the details in the fields you would like to modify.

Select *Submit*.

DELETING GROUPS

Select the group you’d like to modify to view the group details. Select *Delete*.

ASSOCIATION OF NETWORKS WITH FIREWALLS

A public firewall controls the flow of traffic on:

- Public shared networks
- Dedicated public subnets (Routed and Floating IP Subnets)
- Private networks attached to NAT Gateway

The private firewall controls the flow of traffic on:

- Private IP subnets
- Private Layer 2 networks

LOAD BALANCERS AND FIREWALLS

Load balancers, whether private or public, are outside the firewall rules configured in the Cloud Services management console. Firewalls cannot be used to control traffic inbound to any IP or service used on the load balancer.

Firewalls can limit the flow of traffic from the load balancer to your virtual servers. The source address of the forwarded traffic will be the transit interface address of the load balancer. This will be communicated to you when the load balancer is configured. For a private load balancer this will usually be the second usable IP of an interconnect subnet provided when the first private load balancer was requested. For a public load balancer it is from an interconnect subnet that we provide.

As the firewall rule is applied at the virtual server level, if rules are limiting incoming connections you need to consider a rule like “LB-real-ip -> virtual_server port 80 allow”. This would allow traffic from any port of the supplied real IP address of the load balancer to the HTTP port of your virtual server.
Add load balancers to your network to distribute traffic to multiple virtual servers. A single load balancer can service your Virtual Server (Dedicated) Gen2 service within a network.

CREATE A NEW LOAD BALANCER

You can request load balancers from the Load balancers page in the Network & security section of the Cloud Services management console.

You’ll need to choose which network the load balancer should be created in.

If you choose a public load balancer, we’ll allocate a public IP address to the load balancer.

If you choose a private load balancer, you’ll need to provide an IP address. This IP address can’t come from any IP subnets that you have allocated to your private network. You need to provide the load balancer interconnect subnet for your private network. This IP subnet should be unique and not overlap or conflict with any allocated private IP subnets. It also needs to be unique within your organisation.

Please provide a name for the load balancer application you’d like to set up.

Select the application protocol type from the dropdown menu.

The virtual IP port and server port numbers will be automatically entered depending on the application protocol type you selected. You can also change these numbers.

If you select other from the Application protocol type dropdown, another dropdown will appear to give you the option to specify the transport protocol (TCP or UDP). You’ll need to enter the Virtual IP port and server port numbers yourself.

Specify which virtual server(s) will be included in the load balancing pool.

If you select X-Forwarded-For (XFF), the originating IP address of the client connecting to your web server through load balancers will be identified. This is available for HTTP and HTTPS protocols.

SELECT THE LOAD BALANCING METHOD

The methods include:

Least connections: Directs traffic to the virtual server with the least number of current connections.

Round robin: Directs traffic to each virtual server in sequence.

Hash: Assigns traffic based on the source IP address. Hash uses persistent connections to the same server, so can be used when standard persistence methods (below) are not applicable (e.g. non-HTTP traffic or if you require persistence longer than sticky source IP’s 24 hours). This method can produce uneven distribution.

If you selected either Least connections or Round robin as your load balancing method, you can choose to add a persistence option. If you choose None, traffic will be directed according to the specified load balancing method.
Persistence options offers ways to send traffic to the same virtual server.

Sticky source IP: Maintains stickiness using the source IP address, but only for 24 hours.

Persistent cookie: Maintains stickiness using a cookie stored in the user’s browser. When you choose this method, you can then select to have the cookie time-out in seconds, up to one year.

Session cookie: Identifies traffic using a cookie, but only for a browser session.

You will only be able to select the *Persistent cookie* and *Session cookie* options if you specified your application protocol as HTTP.

SSL OFFLOADING

Secure Sockets Layer (SSL) offloading improves the performance of your service by designating a separate device to process the encryption of sensitive data.

To enable SSL Offloading you must first request a load balancer. Once your load balancer is active, return to the load balancer configuration page to submit a request for SSL offloading.

When configuring SSL offloading you must upload your own certificate and assign it to each Virtual IP (VIP). You can upload multiples and assign a certificate per VIP. Each certificate must be added to each network – public or private – separately.

Certificates must be entered in PEM format – the standard format for OpenSSL and other SSL tools. Once you submit the form, the certificates will be uploaded immediately. We do not handle certificate data. You are responsible for adding and updating, including managing certificate expiry.

HEALTH MONITORING

Health monitoring helps a load balancer determine which virtual servers are and aren’t available. Select the health monitoring method you would like to use:

Ping: A Ping health check sends an ICMP echo request packet to the server and awaits an echo response. If you have configured a firewall, your virtual server may not respond to pings unless you allow it and may be incorrectly labelled as ‘down’ as a result.

TCP/UDP (socket open): A TCP/UDP (socket open) health check does a basic check of the server port (e.g. TCP port 80) to see if a virtual server will accept a connection.

HTTP any code: A HTTP any code health check initiates a HTTP request to the virtual server and waits a response of any code. The virtual server will be marked as ‘up’ as long as the HTTP server can reply to the request (including if it replies with error codes such as 404). If you want to use the root URI, enter ‘/’.

HTTP OK code: A HTTP OK code health check is similar to HTTP any code, but only marks the server as ‘up’ if it receives HTTP codes of 200, 201 or 202. If you want to use the root URI, enter ‘/’.

Supported load balancer port and protocol configurations are limited to the options provided through the Cloud Services management console. Available options are:
A load balancer performs a health check every 15 seconds.

A virtual server will be marked as down if it fails a health check three times in a row (45 seconds). Once marked down, a virtual server will be removed from the load balancing pool and no new traffic will be sent to it.

Existing connections to a failed server will need to time out before it can reconnect to the load balancer and reach a new virtual server.

Once marked as down, a virtual server will continue to be health checked every 60 seconds. It will be marked as up if it passes three health checks in a row (180 seconds). Once marked as up, it will be re-added to the load balancing pool.

SOURCE ADDRESSING FROM LOAD BALANCER

Traffic coming from or through the load balancer, for example health checks and load balancer connections, will have a source address of the transit interface address of the load balancer. This will be communicated when the first load balancer is configured. It will not have the source address of the IP address being used for the particular configuration. If applications require the real source address of the traffic then the X-Forward setting can be used.

MODIFY AN EXISTING LOAD BALANCER

Your existing load balancers will be listed on the Load Balancers page in the Cloud Services management console.

Select the load balancer you want to modify and select the Modify this load balancer link. Then you only need to enter the load balancer details you would like to change and submit the request.

MODIFY AN EXISTING LOAD BALANCER WITH SSL OFFLOADING

<table>
<thead>
<tr>
<th>APPLICATION PROTOCOL</th>
<th>VIP PORT</th>
<th>SERVER PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>HTTPS</td>
<td>443</td>
<td>443</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>DNS</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>SMTP</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>SSMTP</td>
<td>465</td>
<td>465</td>
</tr>
<tr>
<td>IMAP</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>IMAP4-SSL</td>
<td>993</td>
<td>993</td>
</tr>
<tr>
<td>IMAPS</td>
<td>585</td>
<td>585</td>
</tr>
<tr>
<td>POP3</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>POP3-SSL</td>
<td>995</td>
<td>995</td>
</tr>
<tr>
<td>OTHER (TCP OR UDP)</td>
<td>User specified</td>
<td>User specified</td>
</tr>
</tbody>
</table>
Your existing load balancers will be listed on the Load Balancers page in the Cloud Services management console.

Select the load balancer you want to modify and select the Modify this load balancer link. Select either the Use an existing public network certificate or Using a new certificate options.

ADDING CERTIFICATES:

Choose the Using a new certificate option, and enter your certificate details – Issued Domain and SSL certificate key – in the text boxes. The text you enter must be in PEM format, as shown in the image below.

![Certificate Details](image)

The Issued Domain, Certificate Authority and Certificate Expiry Date fields will be automatically populated.

Enter a name for your certificate. Select Submit request.

REMOVE AN EXISTING LOAD BALANCER

Select the load balancer you want to modify and select the Remove link.

ACCESS YOUR CONFIGURATION DETAILS

Can’t remember the configuration details of your load balancer? Select the load balancer you want to modify and select the Request current configuration link. The configuration details will be emailed to you.
An SSL VPN connection can be used as out-of-bound management access to your virtual service. The SSL VPN connection allows access to your virtual servers via the private network. It also allows a connection to your dedicated vCentre.

SSL VPN with your virtual servers takes place via the internet.

SSL VPN MANAGEMENT CONNECTION TO VIRTUAL SERVERS

SSL VPN communicates through a secure client-to-site network tunnel, used to remotely access virtual servers from the internet over HTTPS.

You can access the SSL authentication page through a web browser. Once authenticated, the security appliance offers access to the SSL VPN client. After downloading, the client will install and configure itself and establish a secure SSL connection.

All network traffic will be transmitted using a secure network connect tunnel configured with split tunnelling that ensures only traffic destined for the virtual server is routed through the tunnel. All other traffic will be routed through your default network route.

To access your virtual server on your private networks, you’ll need:

- Your virtual server’s private network IP address
- Access to either Remote Desktop software or a Linux secure shell client

Each virtual data centre location you wish to manage, will require a separate SSL VPN connection.

CONNECT USING REMOTE DESKTOP SOFTWARE

You can connect to a virtual server running Windows using Remote Desktop software.

Enter your server’s IP address and then click *Connect*.

You will then be prompted to provide your server’s login details.

CONNECT USING A SECURE SHELL CLIENT

You can connect to a virtual server running Linux using a secure shell client, such as Putty.

Enter your server’s IP address, make sure that SSH is selected, and click *Open*.

You will then be prompted to provide your server’s login details.

You’ll be able to log into the Cloud Services SSL VPN login page after you’ve set up the first SSL VPN user. The login page address will be provided as part of the welcome emails.

You can connect to your vCenter server over an SSL VPN connection using an up-to-date web browser. See the details in your welcome emails for the IP addresses to use and any configuration needed.
It will take up to three business days to set up a SSL VPN connection.

MANAGING SSL VPN USERS

You can manage SSL VPN users from the Management SSL VPN page in the Network & security section of the Cloud Services management console.

From the SSL VPN section, you can:

- Create SSL VPN users
- Modify existing SSL VPN users and reset passwords
- Remove existing SSL VPN users

CREATE SSL VPN USERS

You'll need to have a virtual server set up before you can create a SSL VPN user.

Enter the new SSL VPN user’s details and submit the request.

We’ll email you a username and a temporary password for the new user(s).

The new user will need to log into the Cloud Services SSL VPN login page to update the password.

You can create as many SSL VPN users as you need.

You need to create SSL VPN users for each of your virtual data centres.

MODIFY SSL VPN USERS

1. Select the *Modify* tab.

2. Enter the full name, username or email address to identify the user whose details you would like to modify. Only fill in the details you would like to change.

3. To reset a SSL VPN user’s password, select the *Reset password* checkbox and submit the request. We’ll email you a temporary password.

REMOVE EXISTING SSL VPN USERS

1. Select the *Remove* tab.

2. Enter the full name, username or email address to identify the user who you would like to remove.
All outbound email traffic originating from mail servers operating within the cloud must be sent through our SMTP mail relay service, or alternative software we can provide.

Access to the SMTP mail relay is obtained via the private networks. Once configured any virtual server on a private network can reach the provided SMTP mail relay IP address.

For the full list of SMTP mail relay fees, see the Pricing Guide for your virtual data centre location.

ACCESS THE SMTP MAIL RELAY SECTION
Access the SMTP mail relay section via the Network & Security Management section. From the SMTP mail relay details page, you can:
- Request an SMTP mail relay
- Remove an SMTP mail relay

REQUEST AN SMTP MAIL RELAY
You'll need to provide one or more valid outgoing email domain names.

After you submit the request to add an SMTP mail relay, we email the mail server set-up details to you.

You'll then need to configure your software accordingly.

All emails sent via SMTP mail relay must use one of the domain names you specified in the set up process, in the from field of the email. Using any other domain name will cause the email to be rejected.

REMOVE AN SMTP MAIL RELAY
To stop using our SMTP mail relay service, remove the SMTP mail relay server settings from your virtual servers.

You will no longer be able to send emails from your virtual servers.

ALTERNATIVES TO SMTP MAIL RELAY
We allow the use of several software alternatives to using our SMTP mail relay service.

Microsoft Office 365, Symantec.Cloud and internet protection (email) can be provided and supported through Telstra. For details, click on the names of the software products in the following table.
The following software and outbound port connectivity is permitted:

<table>
<thead>
<tr>
<th>SOFTWARE</th>
<th>PORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Office 365</td>
<td>25, 465, 587</td>
</tr>
<tr>
<td>Symantec.cloud</td>
<td>25</td>
</tr>
<tr>
<td>Internet protection (email)</td>
<td>25</td>
</tr>
</tbody>
</table>
CHAPTER 16
APPENDIX A: ROUTING PRIVATE TRAFFIC WITHIN YOUR VIRTUAL HOST

The following information will help you manually route private and internet traffic, when a second network connection is added to a virtual server. The instructions vary based on the operating system of the virtual server.

For your virtual server to send traffic to your private network, you’ll need to configure Routes on your private network connection for the following private IP subnets:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Use the first IP address of your private IP subnet as the gateway address.

ROUTING VIRTUAL SERVERS RUNNING WINDOWS

Any virtual server with a second network connection, running any version of a Windows based operating system, will need three routes to be added:

```
Route -p add 10.0.0.0 mask 255.0.0.0 <private gateway>
Route -p add 172.16.0.0 mask 255.240.0.0 <private gateway>
Route -p add 192.168.0.0 mask 255.255.0.0 <private gateway>
```

If you have an office LAN connected to an IPsec VPN tunnel using a public IP subnet as a secured traffic source subnet, configure routes toward this subnet using your private network vNIC.

```
Route -p add <IPsec public source subnet> mask <IPsec mask> <private gateway>
```

The `<private gateway>` field refers to the first IP address of the private network subnet your virtual server is connected to. So for example, if your virtual server's private network subnet is 10.1.0.0/23, then 10.1.0.1 is the private gateway.

ROUTING VIRTUAL SERVERS RUNNING LINUX

Any virtual server with a second network connection, running any version of a Linux based operating system, will need three routes to be added:

```
10.0.0.0 mask 255.0.0.0 <private gateway>
172.16.0.0 mask 255.240.0.0 <private gateway>
192.168.0.0 mask 255.255.0.0 <private gateway>
```

The `<private gateway>` field refers to the first IP address of the private network subnet your virtual server is connected to. For example, if your virtual server’s private network subnet is 10.1.0.0/23, then 10.1.0.1 is the private gateway.

The next steps required will vary depending on the version of Linux your virtual servers are using.
REDHAT, ORACLE OR CENTOS LINUX OPERATING SYSTEMS -
EXAMPLE CONFIGURATION FOR ONE ROUTE

1. Apply the routes to the vNIC connected to your private network. The following instructions assume eth2 for this configuration (adapt this to your specific vNIC).

2. Routes should be configured in `/etc/sysconfig/network-scripts/route-eth2` using the following format:

   ```
   10.0.0.0/8 via <private gateway>
   172.16.0.0/12 via <private gateway>
   192.168.0.0/16 via <private gateway>
   ```

3. If you have an office LAN connected to an IPsec VPN tunnel using a public IP subnet as a secured traffic source subnet, add an additional route to the same file `/etc/sysconfig/network-scripts/route-eth2`

   ```
   <IPsec public source subnet> via <private gateway>
   ```

4. To apply the previously defined routes, you’ll need to restart the network services using the following command:

   ```
   # service network restart
   ```

SUSE LINUX OPERATING SYSTEM -
EXAMPLE CONFIGURATION FOR ONE ROUTE

1. Apply the routes to the vNIC connected to your private network. The following instructions assume eth2 for this configuration (adapt this to your specific vNIC).

2. Static routes should be configured in `/etc/sysconfig/network/ifroute-eth2` using the following format:

   ```
   10.0.0.0/8 <private gateway> - eth2
   172.16.0.0/12 <private gateway> - eth2
   192.168.0.0/16 <private gateway> - eth2
   ```

3. If you have an office LAN connected to an IPsec VPN tunnel using a public IP subnet as a secured traffic source subnet, add an additional route to the same file `/etc/sysconfig/network/ifroute-eth2`

   ```
   <IPsec public source subnet> <private gateway> - eth2
   ```

4. To apply the previously defined routes, you’ll need to restart the network services using the following command:

   ```
   # /etc/init.d/network restart
   ```